

# Text as Data: Using LLMs for Annotation

Guest Course – January 2026

**Germain Gauthier, Philine Widmer<sup>1</sup>**

<sup>1</sup>Bocconi University, Paris School of Economics

USI Lugano

# Lecture Outline

## Part I: Validation Framework

1. Why validate LLM annotations?
2. LLM annotation setup & results
3. Human validation
4. Validation with labeled data
5. External proxy validation

## Part II: Running LLMs

6. API vs. local deployment
7. Prompting strategies
8. Fine-tuning considerations
9. Privacy & guardrails
10. Best practices summary

**Goal:** Equip you with practical knowledge to validate LLM-based text annotations and make informed deployment decisions.

## Validation Framework

Human Validation

Labeled Data Validation

External Proxy Validation

## Running LLMs for Annotation

Deployment Options

Prompting Strategies

Privacy and Guardrails

## Best Practices Summary

# Why Validate LLM Annotations?

## The Promise

- Annotate large-scale at low cost
- Consistent application of coding rules
- Handles nuance and complexity better than keywords (and other methods)
- Faster iteration than human coding

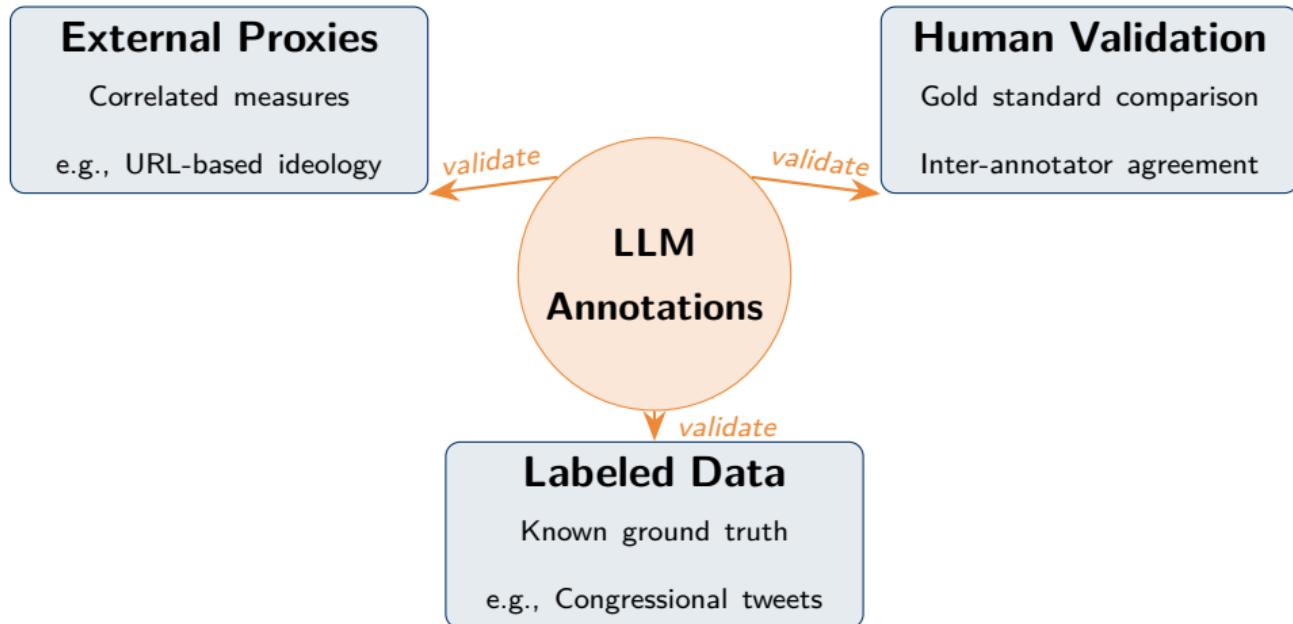
## The Risk

- Black-box
- Unknown error rates without validation
- Systematic biases from training
- Hallucination, overconfidence
- Full replicability not guaranteed
- Model updates

## Take-away

→ Validation is not optional – we want **measurement**, not **guessing**. Ideally, multiple validation approaches provide complementary evidence of reliability.

# The Validation Triangle



# Running Example: Political Twitter/X Study

## Research Context

Study of user behavior and political content on Twitter/X

## Research Questions

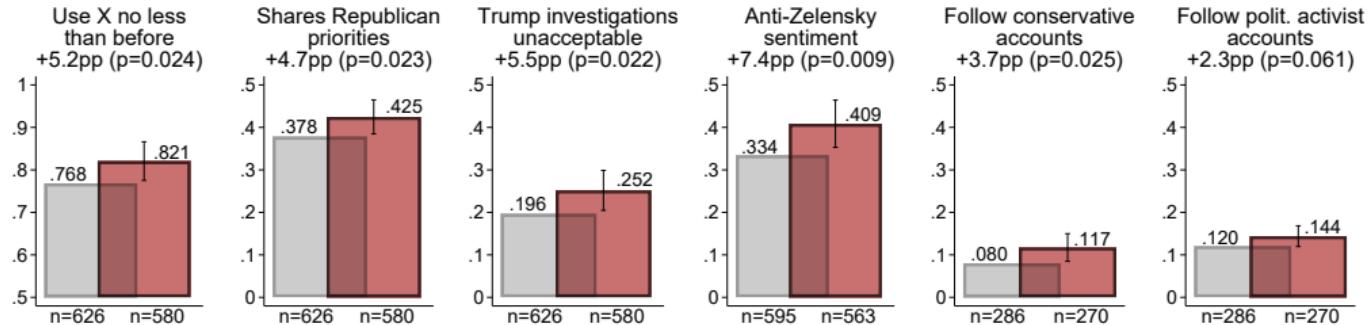
- Political leaning of content/accounts?
- What account types dominate?
- How do methods compare?

## Annotation Challenge

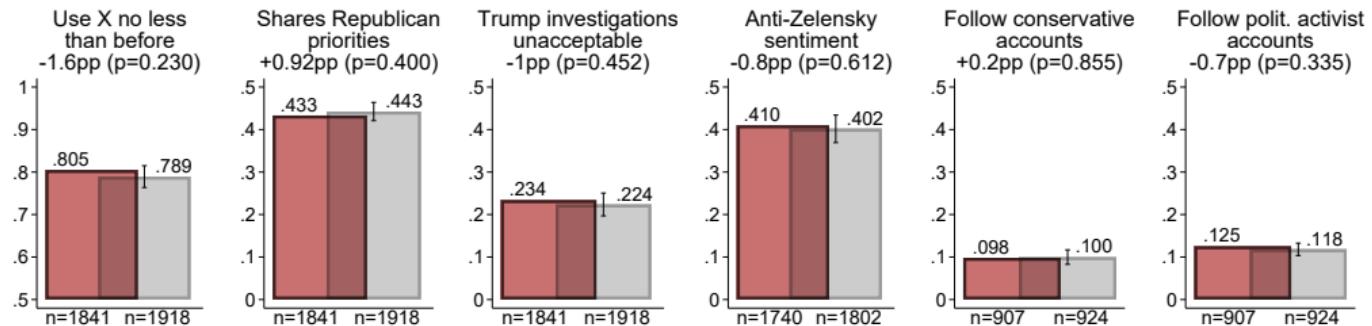
- Millions of accounts – manual annotation infeasible

# Running Example: Political Twitter/X Study

Sample: Users Initially on Chronological Feed. Treatment: Algorithmic Feed.

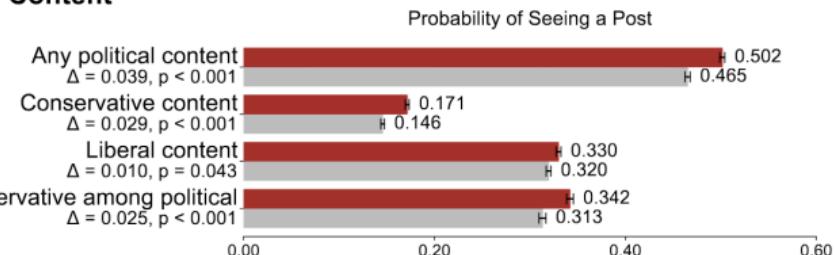


Sample: Users Initially on Algorithmic Feed. Treatment: Chronological Feed.

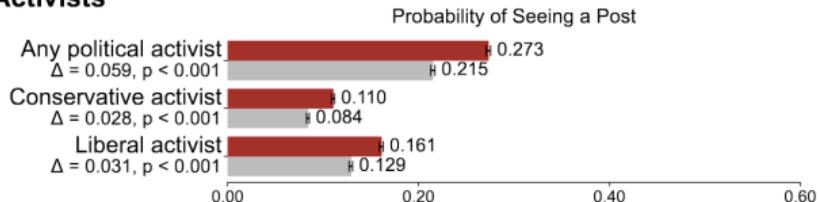


# Running Example: Political Twitter/X Study

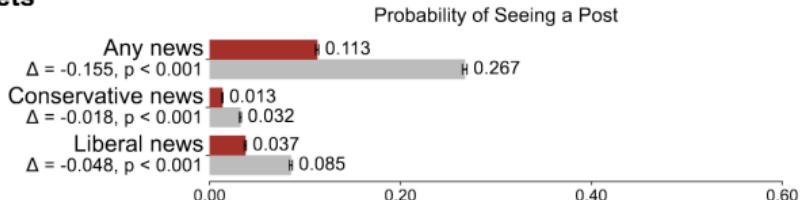
## Political Content



## Political Activists



## News Outlets



# Dataset Overview

## Data Collection (Text)

- **Platform:** Twitter/X
- **Period:** Summer '23
- **Scope:** Feed samples, followed accounts
- **Unit:** Account-level analysis

## Validation Data Sources

| Source          | Description                         |
|-----------------|-------------------------------------|
| Human coders    | 4 annotators, 500 accounts each     |
| Congress tweets | 353,742 tweets from 968 members     |
| URL ideology    | Domain-level political slant scores |

Multiple independent data sources enable robust validation of annotations.

# Case Study: LLM Annotation Setup

## Model Configuration

- **Model:** Llama 3.3 70B Instruct
- **Temperature:** 0 (improves reproducibility but is not perfectly deterministic)
- **Input:** Bio (+ sample of recent posts)

## Annotation Dimensions

### 1. Political Leaning

- Conservative / Liberal / Cannot say

### 2. Content Type

- News / Political activist / Entertainment / Official / Other

### Prompt Structure

I will show you the name, description, and tweets from a Twitter account.

Classify the account's political leaning.

Labels: Conservative, Liberal, Cannot say

Account name: [...]

Description: [...]

Sample tweets: [...]

## LLM Annotation Results: Word Patterns by Category

## Conservative Accounts



## Liberal Accounts



Wordclouds reveal distinctive vocabulary patterns that LLMs leverage for classification.

# Human Validation: Methodology

## Study Design

- **Annotators:** 4 US-based human coders
- **Sample:** 500 accounts per annotator
- **Task:** Same dimensions as LLM
- **Overlap:** Subset coded by multiple annotators

## Key Metrics

- **Inter-annotator reliability:** Krippendorff's  $\alpha$
- **LLM vs. human agreement:** Confusion matrix
- **Performance:** Precision, Recall, F1-score

# What is Krippendorff's Alpha?

## Definition

Measures agreement among annotators, accounting for chance.

$$\alpha = 1 - \frac{D_o}{D_e}$$

$D_o$  = observed disagreement;  $D_e$  = expected

## Why use it?

- Works with any number of annotators
- Handles missing data
- Corrects for chance agreement

## Interpretation Scale

| $\alpha$      | Interpretation |
|---------------|----------------|
| $> 0.80$      | Excellent      |
| $0.67 - 0.80$ | Good           |
| $0.40 - 0.67$ | Moderate       |
| $< 0.40$      | Poor           |

**Key insight:** If humans disagree, LLMs cannot achieve perfect accuracy.

# Human Validation: Inter-Annotator Agreement

## Krippendorff's Alpha Results

| Dimension         | $\alpha$ | Interpr. |
|-------------------|----------|----------|
| Political Leaning | 0.69     | Good     |
| Content Type      | 0.49     | Moderate |

## Interpretation

- $\alpha > 0.80$ : Excellent
- $\alpha > 0.67$ : Good
- $\alpha > 0.40$ : Moderate

**Key Finding:** Political leaning shows good agreement ( $\alpha = 0.69$ ), content type is more ambiguous ( $\alpha = 0.49$ ).

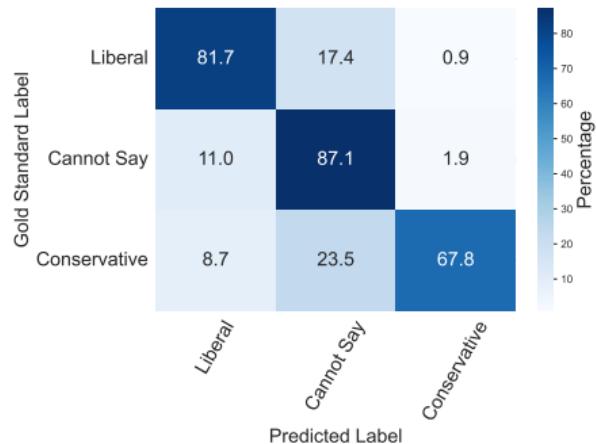
## Why the difference?

- Political leaning: Clearer signals
- Content type: Subjective boundaries

*This sets the ceiling for LLM accuracy!*

# Human Validation: LLM vs. Human Agreement

Political Leaning Confusion Matrix



Performance Metrics

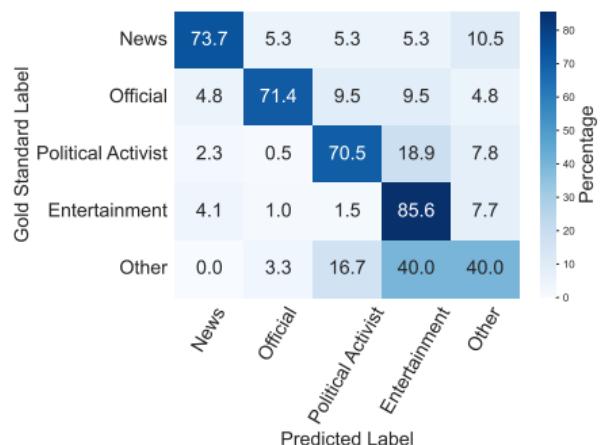
| Class            | P           | R           | F1          |
|------------------|-------------|-------------|-------------|
| Liberal          | 0.76        | 0.93        | 0.84        |
| Cannot say       | 0.78        | 0.74        | 0.76        |
| Conservative     | 0.94        | 0.68        | 0.79        |
| <b>Macro avg</b> | <b>0.83</b> | <b>0.78</b> | <b>0.80</b> |

P = Precision, R = Recall

**Overall:** ~80% accuracy, comparable to human agreement

# Human Validation: Content Type Performance

## Content Type Confusion Matrix



## Key Observations

- Overall accuracy:  $\sim 75\%$
- News: Easiest to classify
- Entertainment vs. Other: Most confusion
- Reflects human disagreement

## Takeaway

LLM performance tracks human agreement – harder for humans means harder for LLMs.

# Validation with Known Ground Truth

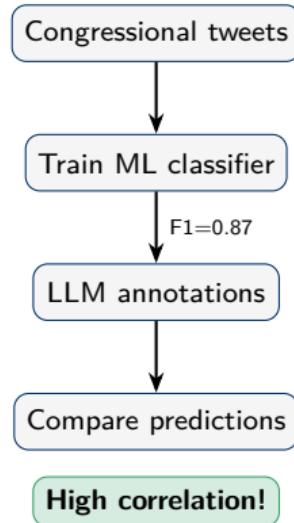
## The Idea

- Use datasets with *known* labels
- Compare LLM predictions to ground truth
- No human annotation needed

## Congressional Tweets Dataset

- **Source:** Congress member accounts
- **Size:** 353K tweets, 968 members
- **Labels:** Party affiliation (R/D)

Party affiliation is **objective ground truth!**



# ML Classifier Approach

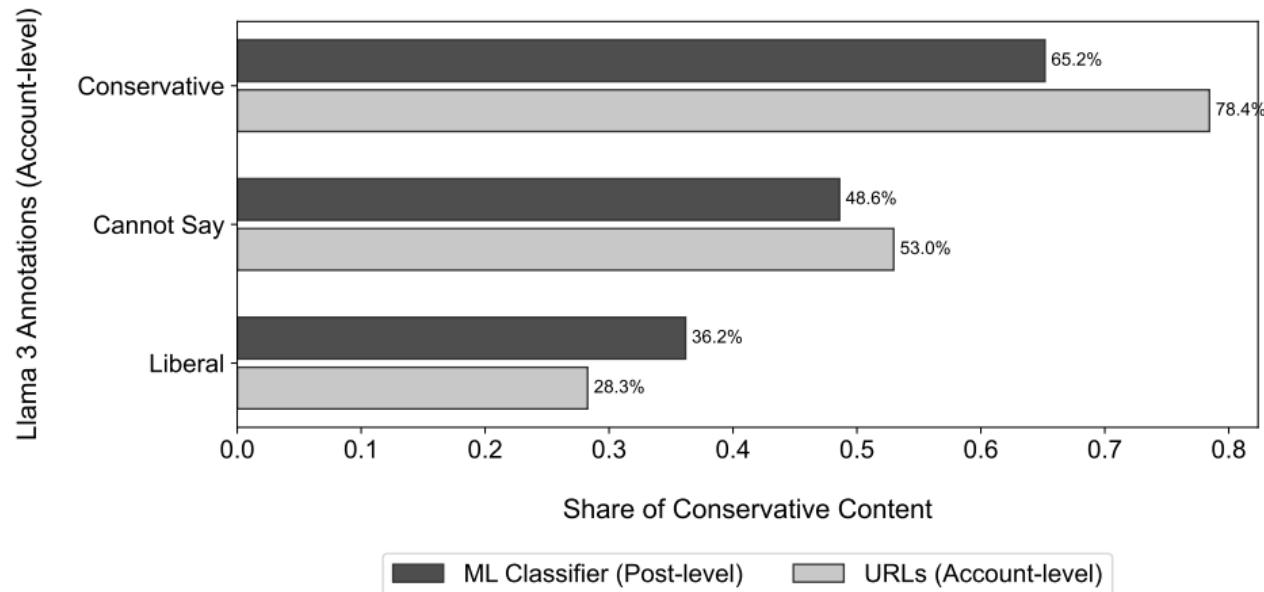
## Methodology

1. Train classifier on Congressional tweets
  - Word frequency features
  - Known party labels
2. Apply to general accounts
3. Compare with LLM predictions

## Classifier Performance

- F1-score on test set: **0.87**
- Strong generalization to political language

# ML Classifier Approach



## ML Classifier: Distinctive Language Patterns

## Republican Congress Members



Word frequencies from Congressional tweets form the basis for the ML classifier's predictions.

## Democratic Congress Members



# External Proxy Validation: URLs

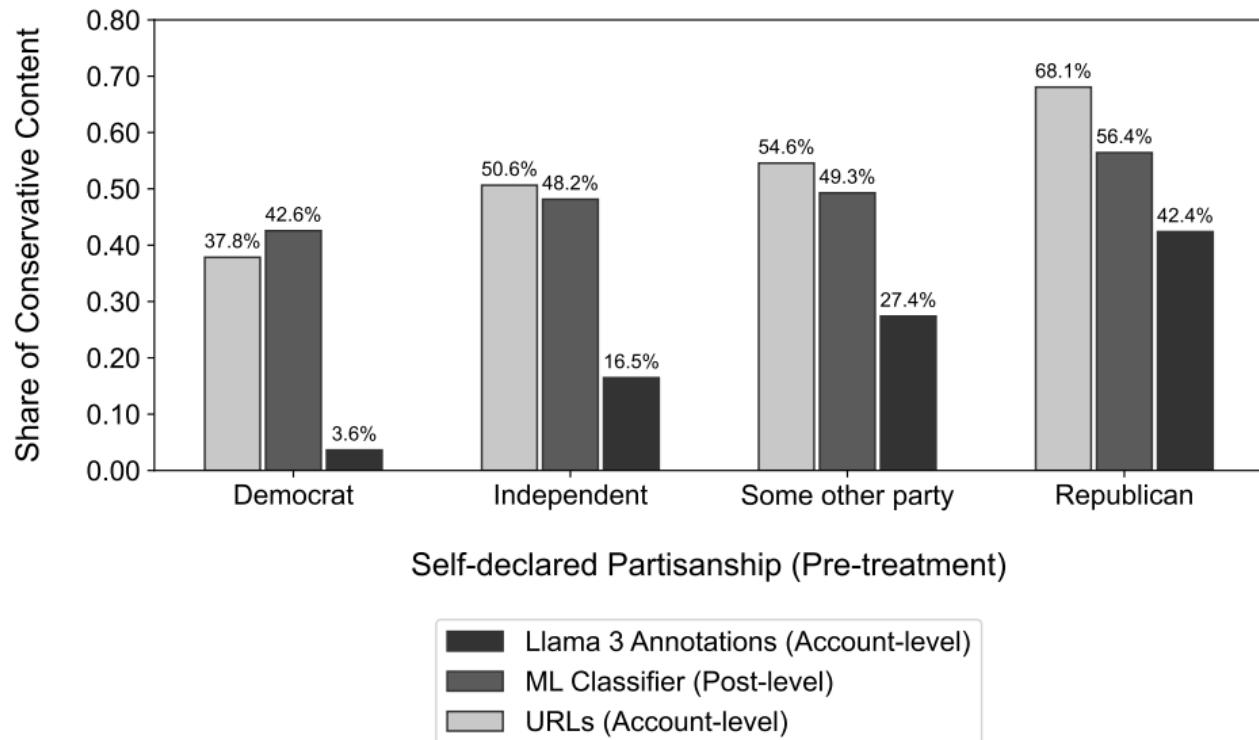
## URL-Based Ideology Measures

- Shared URLs have known ideological slant
- Example: Breitbart (cons.), MSNBC (lib.)
- Aggregate URL sharing patterns per account
- Correlate with LLM political annotations
- Selective: only if URL present

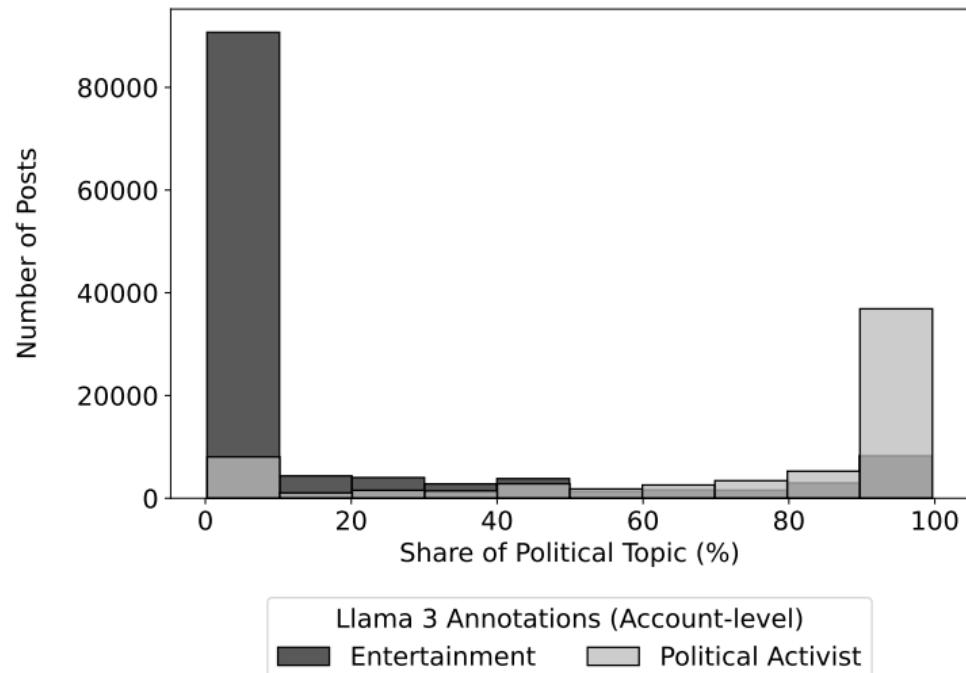
## Other Potential Proxies

- Topics
- Hashtags

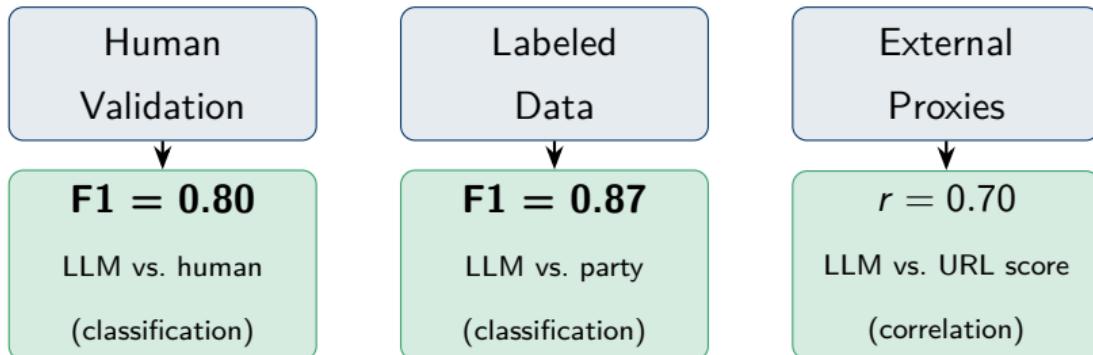
# External Proxy Validation: URLs



# External Proxy Validation: Topics



# Validation Summary: Convergent Evidence



**Convergent Evidence: LLM annotations are reliable**

**Why different metrics?** F1-score for categorical comparisons (LLM labels vs. categorical ground truth). Correlation ( $r$ ) for continuous comparisons (LLM labels vs. continuous ideology scores from URL sharing patterns).

## Validation Framework

- Human Validation

- Labeled Data Validation

- External Proxy Validation

## Running LLMs for Annotation

- Deployment Options

- Prompting Strategies

- Privacy and Guardrails

## Best Practices Summary

# API vs. Local Deployment

## API-Based

- + Easy setup, no hardware
- + Access to latest models
- + Automatic scaling
- Usage costs add up
- Data leaves your server
- Limited fine-tuning
- Rate limits apply

---

**Providers:** OpenAI, Anthropic, Google, Groq, Together.ai

## Local/Self-Hosted

- + Full data control
- + No per-query costs
- + Full fine-tuning
- + No rate limits
- GPU hardware needed
- Setup complexity
- Maintenance burden
- Limited to smaller models

---

**Tools:** Ollama, vLLM, llama.cpp, HuggingFace

# API Options for Research

| Provider    | Key Models          | Fine-tuning   | Cost   | Notes            |
|-------------|---------------------|---------------|--------|------------------|
| OpenAI      | GPT-4o, GPT-4o-mini | Yes (limited) | \$\$\$ | Most popular     |
| Anthropic   | Claude 3.5 Sonnet   | No            | \$\$\$ | Strong reasoning |
| Google      | Gemini 1.5 Pro      | Yes           | \$\$   | Long context     |
| Groq        | Llama 3.x, Mixtral  | No            | \$     | Very fast        |
| Together.ai | Open-source models  | Yes           | \$\$   | Flexible         |

**A personally recommended budget option for non-sensitive data:** Groq offers fast inference for open-source models at low cost.

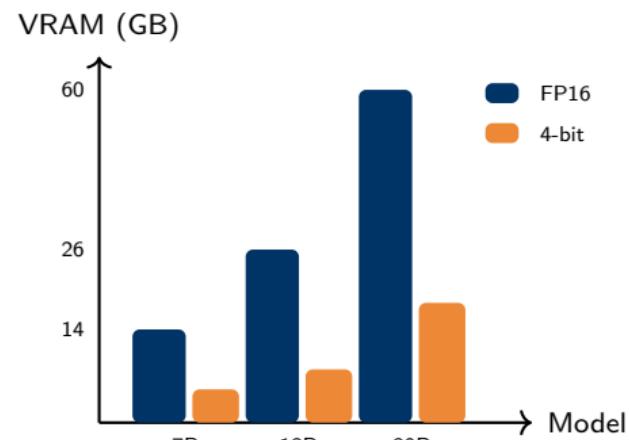
# Local Deployment: Hardware Requirements

## GPU Memory Requirements

| Model Size | Full (FP16) | Quantized (4-bit) |
|------------|-------------|-------------------|
| 7B params  | 14 GB       | 4–5 GB            |
| 13B params | 26 GB       | 8 GB              |
| 30B params | 60 GB       | 18 GB             |
| 70B params | 140 GB      | 35 GB             |

## Common GPU Options

- RTX 4090: 24 GB (~\$2,000)
- A100: 40/80 GB (cloud: \$2–4/hr)
- Consumer: RTX 3090 (24 GB)



Quantization enables running larger models on consumer hardware.

# Quantization: Running Large Models Locally

## What is Quantization?

- Reduce precision of model weights
- FP32 → FP16 → INT8 → INT4
- Trades accuracy for memory/speed

**Quality:** 8-bit (<1% loss), 4-bit (~2–5% loss)

# Temperature and Reproducibility

## What Temperature Controls

- **Temperature = 0:** Greedy decoding
- **Temperature > 0:** Adds randomness
- For annotation: always use temp = 0

## Important Caveat

Temperature = 0 is **not perfectly deterministic:**

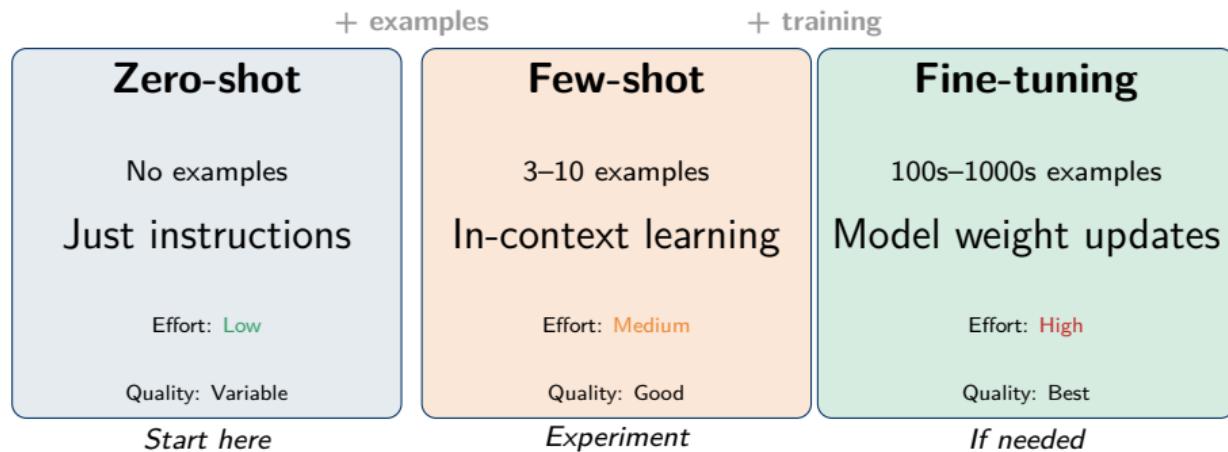
- Floating-point variations
- GPU parallelism
- Server load balancing

## Provider Documentation

|           |                           |
|-----------|---------------------------|
| OpenAI    | “Mostly deterministic”    |
| Anthropic | “Not fully deterministic” |
| Google    | Seed is “best-effort”     |

**Best practice:** Run multiple passes, report stability, document model version.

# Prompting Strategies Overview



**Recommendation:** Start with zero-shot, experiment with few-shot examples, consider fine-tuning based on performance needs and annotation effort.

# Zero-Shot Prompting

## Structure

1. Clear task definition
2. Output format specification
3. Classification categories
4. The text to classify

## Best Practices

- Be explicit about categories
- Specify format (JSON, single word)
- Include “Cannot determine” option
- Set temperature = 0 for consistency

### Example Prompt

Classify the political leaning of this Twitter account based on their bio and recent posts.

Categories:

- Conservative
- Liberal
- Cannot determine

Output only the category name.

Bio: [account bio]

Posts: [sample posts]

# Few-Shot Prompting

## Adding Examples

- Include 3–10 labeled examples
- Cover all categories
- Include edge cases

### Few-Shot Template

[Task description]

Ex 1: "MAGA..." → Conservative

Ex 2: "Progressive..." → Liberal

Ex 3: "Cat lover..." → Cannot determine

Now classify: [new account]

## Example Selection Tips

- Representative of each class
- Balance across categories

**Caveat:** Example selection can appear arbitrary (e.g.,  
to referees) – document choices.

# Fine-Tuning: When and How

## When to Fine-Tune

- Few-shot performance insufficient
- Domain-specific terminology
- Very large annotation volume
- Need for (better) reproducibility

## Requirements

- Labeled training data (250–500+)
- Access to fine-tunable model
- Computational resources
- Validation set for evaluation

## Fine-Tuning Options

| Method   | Notes                   |
|----------|-------------------------|
| Full     | Expensive, best results |
| LoRA     | Efficient, popular      |
| QLoRA    | Memory-efficient        |
| OpenAI   | API fine-tuning         |
| Together | Open models             |
| Local    | Full control            |

**Note:** Claude (Anthropic) does *not* support fine-tuning.

# Privacy Considerations

## Data Sensitivity Questions

- Does data contain PII?
- Is data subject to IRB approval?
- Can data leave institutional servers?

## Training Defaults

- **API/Enterprise:** Not used for training
- **Consumer:** Used by default; opt-out available

## Privacy-Preserving Options

|                  |                  |
|------------------|------------------|
| Locally deployed | Data stays local |
| Anonymization    | Remove PII first |
| Enterprise APIs  | No training use  |

**Rule:** When in doubt, use local deployment or consult IRB.

# Guardrails and Content Restrictions

## The Problem

- LLMs may refuse sensitive content
- Extremist, violent, or sexual content
- Inconsistent refusal patterns

## Research Implications

- Cannot annotate certain content via API
- Refusals create missing data, bias toward “safe” content

## Solutions

- **Local models** – finetuning possible
- **System prompts** – research context
- **Researcher access** – provider programs
- **Pre-filtering** – remove extreme content

## Validation Framework

Human Validation

Labeled Data Validation

External Proxy Validation

## Running LLMs for Annotation

Deployment Options

Prompting Strategies

Privacy and Guardrails

## Best Practices Summary

# Best Practices Summary

## Validation

1. Always validate – never assume accuracy
2. Use multiple validation methods
3. Report inter-annotator agreement
4. Compare to human performance ceiling

## Reproducibility

5. Set temperature = 0 (not fully deterministic)
6. Document model version and date
7. Share prompts and code

## Implementation

8. Start with zero or few-shot prompting
9. Pilot test on small sample
10. Build error analysis into workflow
11. Consider privacy early

## Reporting

12. Report precision, recall, F1
13. Show confusion matrices
14. Discuss limitations

# Remember: It's still supervised learning!

**Key principle:** LLMs are just another supervised learning approach

**All the usual rules apply** (see Lecture 3):

- **Train/validation/test split:** Don't evaluate on training data!
- **Class imbalance:** Handle appropriately
- **Overfitting:** Monitor validation performance
- **Metrics:** Choose appropriate for your task (accuracy, F1, etc.)

## The current research frontier

- Researchers increasingly generate key variables (labels, scores, embeddings, latent constructs) using LLMs / ML, and then use them in regressions.
- Treating these generated quantities as observed data can create bias and invalid inference due to prediction/measurement error.
- Main references of this (still very recent) literature: Egami, Hinck, Brandon M. Stewart, et al. 2023; Egami, Hinck, Brandon M Stewart, et al. 2024; Battaglia et al. 2024; Ludwig et al. 2024; Carlson and Dell 2025

# Questions?

Thank you for your attention

**Germain Gauthier, Philine Widmer**

Bocconi University, Paris School of Economics

# References I

-  Battaglia, Laura et al. (2024). *Inference for Regression with Variables Generated by AI or Machine Learning*. Revised Apr 2025. arXiv: 2402.15585.
-  Carlson, Jacob and Melissa Dell (2025). “A Unifying Framework for Robust and Efficient Inference with Unstructured Data”. In: *arXiv preprint arXiv:2505.00282*.
-  Egami, Naoki, Musashi Hinck, Brandon M Stewart, et al. (2024). “Using Large Language Model Annotations for the Social Sciences: A General Framework of Using Predicted Variables in Downstream Analyses”. In: *Preprint from November 17*, p. 2024.
-  — (2023). “Using Imperfect Surrogates for Downstream Inference: Design-based Supervised Learning for Social Science Applications of Large Language Models”. In: *Advances in Neural Information Processing Systems 36*.

## References II



Ludwig, Jens, Sendhil Mullainathan, and Stefan Rambachan (2024). *Large Language Models: An Applied Econometric Framework*. Working Paper 33344. National Bureau of Economic Research.