
1/16

Text as Data: Transformers
Guest Course – January 2026

Germain Gauthier, Philine Widmer1

1Bocconi Unversity, Paris School of Economics

USI Lugano



2/16

The journey so far

• We’ve covered increasingly sophisticated text representations:
◦ Bag-of-words: Counts, ignores order
◦ Embeddings (Word2Vec): Dense vectors, captures semantic similarity
◦ Semantic parsing: Extracts linguistic structure

• Key limitation: These methods struggle with context
◦ Word2Vec gives one vector per word, regardless of context
◦ “bank” in “river bank” vs. “investment bank”

• This session: Transformers
◦ Context-aware representations
◦ State-of-the-art performance on almost all (supervised) NLP tasks
◦ Foundation for modern LLMs (GPT, Claude, etc.)



3/16

Before transformers: The sequence modeling problem

Goal: Model sequences where order matters

• “The Fed raised rates” ̸= “Rates raised the Fed”

Traditional approach: Recurrent Neural Networks (RNNs)

• Process text word-by-word, left-to-right

• Maintain “hidden state” that carries information forward

• Problem 1: Slow (must process sequentially, can’t parallelize)

• Problem 2: Struggle with long-range dependencies

Example: “The Fed, which was established in 1913 and has weathered many
crises, raised rates.”

Transformer solution: Process entire sequence at once using attention



4/16

The key innovation: Attention mechanism

Core idea: When processing each word, look at all other words and decide
which are relevant

Intuition:
“The Federal Reserve raised interest rates.”

When processing “raised”:

• Pay attention to “Federal Reserve” (who is doing the action?)

• Pay attention to “interest rates” (what is being raised?)

• Ignore “The” (not very informative)

Attention learns these relationships automatically from data

Self-attention: Each word attends to every other word (including itself)



5/16

Self-attention: An example

Sentence: “The bank on Wall Street raised rates.”

When processing “bank”:

• High attention to “Wall Street” → financial institution

• High attention to “raised rates” → confirms financial meaning



6/16

Transformer architecture: Key components

1. Input embeddings: Convert words to vectors (like Word2Vec)

2. Positional encoding: Add information about word order

3. Multi-head self-attention: Look at other words from multiple
“perspectives”

4. Feed-forward layers: Process each position independently

5. Layer normalization & residual connections: Help training

6. Stack many layers: 12-24 layers for BERT, 96+ for GPT-4



7/16

Transformer architecture: Output and advantages

Output: Contextualized representation for each word

• Unlike Word2Vec, representation depends on surrounding words

Key advantage: Entire sequence processed in parallel → much faster training



8/16

Two flavors of transformers
BERT family:

• Reads entire text at once (bidirectional)

• Good for: Classification, NER, question answering

• Example: Sentiment analysis

GPT family:

• Generates text left-to-right (autoregressive)

• Can only look at previous words, not future words

• Good for: Text generation, completion

• Example: “Complete this sentence: The Federal Reserve...”

(Somewhat historical groupings)



9/16

BERT: Pre-training approach

Key idea: Pre-train on massive unlabeled text, then fine-tune for specific tasks

Pre-training objectives:
• Masked Language Modeling (MLM):

◦ Hide 15% of words, predict them from context
◦ Example: “The Federal [MASK] raised rates” → predict “Reserve”

• Next Sentence Prediction:
◦ Predict if sentence B follows sentence A
◦ Helps understand relationships between sentences



10/16

BERT: Impact

Result: Rich contextual representations that work well for many tasks

Why it matters: Revolutionized NLP in 2018

• Showed power of pre-training + fine-tuning



11/16

ModernBERT (2024)
Recent improvements to BERT architecture:

• Longer context: 8,192 tokens (vs. 512 for original BERT)

• Better efficiency: Faster training and inference
• Updated pre-training:

◦ Trained on more recent data
◦ Better optimization techniques
◦ No Next Sentence Prediction (didn’t help much)

• Strong performance: Matches or beats larger models on many tasks

Key insight: Architecture improvements matter

• Not just about scale (bigger models), also engineering + training techniques

For researchers: ModernBERT is a good default choice for supervised learning



12/16

The rise of Large Language Models (LLMs)

Scaling up decoder-only transformers:

• GPT-3 (2020): 175B parameters

• GPT-4 (2023): >1T parameters (estimated)

• Claude, Gemini, Llama: Similar scale

Emergence of new capabilities at scale:

• In-context learning: Learn from examples in the prompt

• Reasoning: Chain-of-thought, step-by-step problem solving

• Instruction following: Do what you ask without fine-tuning

• Multi-task: One model, many tasks



13/16

LLM training paradigm

1. Pre-training: Predict next word on massive text corpus

2. Instruction tuning: Fine-tune on instruction-following examples

3. RLHF: Align with human preferences



14/16

Reinforcement Learning from Human Feedback (RLHF)

Problem: Pre-trained LLMs are good at predicting text, but not at being helpful

RLHF process:
1. Collect human preferences:

◦ Show humans multiple model outputs for same prompt
◦ Ask: “Which response is better?”

2. Train reward model:
◦ Learn to predict human preferences
◦ Input: (prompt, response) → Output: quality score

3. Optimize policy:
◦ Use reinforcement learning to maximize reward
◦ Make model generate responses humans prefer



15/16

RLHF: Results

Result: Models that are helpful, harmless, and honest

• Follow instructions better

• Refuse harmful requests

• Admit uncertainty



16/16

Reasoning capabilities

Chain-of-Thought (CoT) prompting:

• Ask model to “think step by step”

• Dramatically improves performance on reasoning tasks

Example:
Without CoT : “The Federal Reserve raised rates 4 times in 2022 and 3 times in
2023. How many total increases?” → Often incorrect

With CoT : “...Think step by step.”
Model : “Let me break this down: 2022: 4 rate increases; 2023: 3 rate increases;
Total: 4 + 3 = 7 increases”

Why it works: Generating intermediate steps helps model reason


	The Transformer Architecture
	BERT and Modern Encoders
	Modern Large Language Models

