

# Text as Data: Topic Models

Guest Course – January 2026

**Germain Gauthier, Philine Widmer<sup>1</sup>**

<sup>1</sup>Bocconi University, Paris School of Economics

USI Lugano

# Today: Unsupervised learning with topic models

- **Supervised learning** (yesterday): predict labels from text
  - Great for prediction once target is defined
  - Limited for discovery: “What are the themes in this corpus?”
- **Unsupervised learning** (today): discover latent structure
  - No labels required
  - Goal: find interpretable patterns/topics in text
- Focus: **Latent Dirichlet Allocation (LDA)**<sup>1</sup>
  - Matrix decomposition perspective
  - Generative model interpretation
  - Estimation and hyperparameters
  - Applications in economics and social sciences

## Recall: Supervised text classification

Yesterday we had:

- Documents  $i = 1, \dots, n$
- Labels  $y_i$  (e.g., sentiment, political party)
- Features  $x_i$  (bag-of-words, tf-idf)
- Goal: learn  $f(x_i) \rightarrow y_i$

Today: **No labels!**

- Same documents, same features
- Goal: discover latent themes/topics that explain word patterns
- Output: interpretable groupings of words (topics) and documents

# What is a “topic”?

Intuitively, a **topic** is a recurring pattern of co-occurring words.

Examples:

- **Topic 1 (Economics)**: *growth, inflation, GDP, unemployment, economy*
- **Topic 2 (Politics)**: *election, vote, party, government, president*
- **Topic 3 (Health)**: *patient, hospital, treatment, medical, doctor*

Formally, a topic is a **distribution over words**.

- Each topic assigns probability to every word in vocabulary
- High-probability words characterize the topic

# Why topic models?

Applications:

- **Exploratory data analysis:** What are documents about?
- **Dimensionality reduction:** Represent documents by topic mixtures instead of high-dimensional word counts
- **Feature extraction:** Use topic proportions as features for downstream tasks (e.g., regression, classification)

Economics/social science examples:

- Policy documents: identify issue dimensions
- Congressional speeches: track political agendas
- Central bank communications: detect shifts in policy focus

# The document-term matrix

Recall the bag-of-words representation:

- $n$  documents,  $V$  vocabulary size
- $X \in \mathbb{N}^{n \times V}$ : each entry  $X_{ij} = \text{count of word } j \text{ in document } i$

|         | word 1 | word 2 | ... | word $V$ |
|---------|--------|--------|-----|----------|
| doc 1   | 5      | 0      | ... | 2        |
| doc 2   | 1      | 8      | ... | 0        |
| :       | :      | :      | ..  | :        |
| doc $n$ | 0      | 3      | ... | 1        |

Problem:  $X$  is high-dimensional ( $V \sim 10^4$ ) and sparse.

# Matrix decomposition perspective

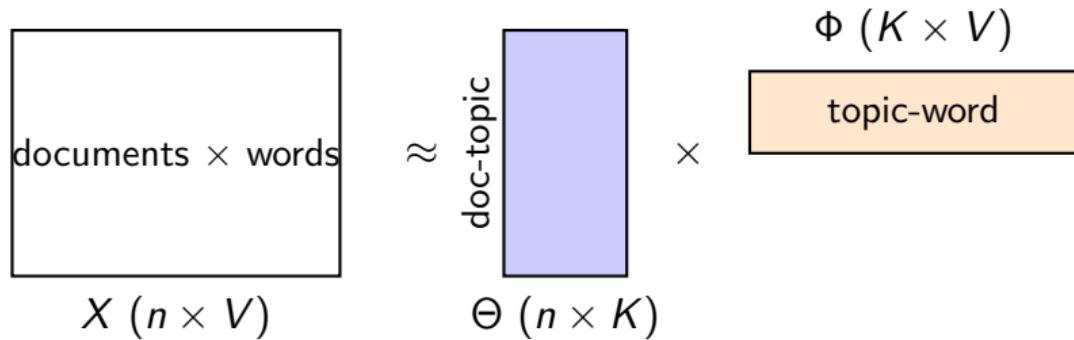
**Key idea:** Approximate  $X$  as a product of two lower-dimensional matrices.

$$\underbrace{X}_{n \times V} \approx \underbrace{\Theta}_{n \times K} \times \underbrace{\Phi}_{K \times V}$$

where  $K \ll V$  (e.g.,  $K = 10\text{--}100$  topics).

- $\Theta$ : **document-topic matrix**
  - $\theta_i = (\theta_{i1}, \dots, \theta_{iK})$ : topic proportions in document  $i$
  - $\sum_{k=1}^K \theta_{ik} = 1, \theta_{ik} \geq 0$
- $\Phi$ : **topic-word matrix**
  - $\phi_k = (\phi_{k1}, \dots, \phi_{kV})$ : word distribution for topic  $k$
  - $\sum_{v=1}^V \phi_{kv} = 1, \phi_{kv} \geq 0$

# Visualizing the decomposition



Each document is a **mixture of topics**, each topic is a **distribution over words**.

# LDA: Generative model

LDA posits the following generative process for each document  $i$ :

1. Draw topic proportions:  $\theta_i \sim \text{Dirichlet}(\alpha)$
2. For each word position  $j = 1, \dots, N_i$  in document  $i$ :
  - 2.1 Draw a topic:  $z_{ij} \sim \text{Categorical}(\theta_i)$
  - 2.2 Draw a word:  $w_{ij} \sim \text{Categorical}(\phi_{z_{ij}})$

Parameters:

- $\alpha \in \mathbb{R}_+^K$ : Dirichlet prior for document-topic distributions
- $\beta \in \mathbb{R}_+^V$  (or  $\eta$ ): Dirichlet prior for topic-word distributions
- $\phi_k \sim \text{Dirichlet}(\beta)$  for each topic  $k = 1, \dots, K$

# What does LDA learn?

Given a corpus (observed word counts), LDA inference produces:

1. **Topic-word distributions**  $\phi_k$  for  $k = 1, \dots, K$ 
  - o Each topic's vocabulary signature
  - o Typically display top 10–20 words per topic
2. **Document-topic distributions**  $\theta_i$  for  $i = 1, \dots, n$ 
  - o What topics are present in each document?
  - o Can be used as features for downstream tasks

# Inference problem

**Goal:** Given observed words  $\mathbf{w}$ , infer latent variables  $\theta, \phi, \mathbf{z}$ .

Posterior distribution:

$$p(\theta, \phi, \mathbf{z} \mid \mathbf{w}, \alpha, \beta) = \frac{p(\mathbf{w}, \theta, \phi, \mathbf{z} \mid \alpha, \beta)}{p(\mathbf{w} \mid \alpha, \beta)}$$

**Problem:** The denominator (marginal likelihood) is intractable.

$$p(\mathbf{w} \mid \alpha, \beta) = \int_{\theta, \phi} \sum_{\mathbf{z}} p(\mathbf{w}, \theta, \phi, \mathbf{z} \mid \alpha, \beta) d\theta d\phi$$

Summing over all possible topic assignments  $\mathbf{z}$  is exponential in document length.

## Two main inference methods

### 1. Variational Inference (Blei, Ng, Jordan 2003)

- Approximate posterior with simpler distribution  $q(\theta, \phi, \mathbf{z})$
- Minimize KL divergence:  $\text{KL}(q\|p)$
- Fast, deterministic
- Used in: gensim, sklearn

### 2. Gibbs Sampling (Griffiths & Steyvers 2004)

- MCMC method: iteratively sample topic assignments  $z_{ij}$
- Integrate out  $\theta, \phi$  (collapsed Gibbs sampling)
- Slower, but often more accurate
- Used in: MALLET, tomotopy

# Hyperparameters: $\alpha$ (document-topic)

$\alpha$  controls how many topics each document uses.

**Small  $\alpha$  (e.g., 0.1):** Sparse topic mixtures

- Each document uses few topics
- More interpretable (documents are “about” one or two things)
- Default in many implementations:  $\alpha = 50/K$

**Large  $\alpha$  (e.g., 10):** Dense topic mixtures

- Documents use many topics
- Less interpretable
- May be appropriate for very short documents

# Hyperparameters: $\beta$ (topic-word)

$\beta$  (sometimes  $\eta$ ) controls how many words each topic uses.

**Small  $\beta$  (e.g., 0.01):** Sparse word distributions

- Each topic concentrated on few words
- More interpretable topics
- Default in many implementations:  $\beta = 0.01$  or  $\beta = 1/V$

**Large  $\beta$  (e.g., 1.0):** Dense word distributions

- Topics spread over many words
- Less distinct topics
- Rarely used

# Choosing the number of topics $K$ (1/2)

No single correct answer! Trade-offs:

## **Small $K$ (e.g., 5–10):**

- Broad, general topics
- Easier to interpret
- May miss fine-grained distinctions

## **Large $K$ (e.g., 50–100):**

- More specific topics
- Captures more detail
- Harder to interpret, potential redundancy

## Choosing the number of topics $K$ (2/2)

### Approaches:

- **Perplexity**: held-out log-likelihood (often keeps increasing with  $K$ )
- **Coherence**: do top words co-occur in documents? (better metric)
- **Human evaluation**: read topics, pick  $K$  that makes sense
- **Sensitivity analysis**: try multiple  $K$ , compare results

# Interpreting topics

1. **Top words:** Look at highest-probability words in  $\phi_k$

- Typically display top 10–20 words
- Do they cohere? Can you give the topic a label?

2. **Representative documents:** Which documents have high  $\theta_{ik}$ ?

- Read documents where topic  $k$  is dominant
- Validates topic interpretation

# Using topics for downstream tasks

Topics as features for prediction:

**Example:** Predict stock returns from earnings call transcripts

1. Run LDA on all transcripts → get  $\theta_i$  for each document
2. Use  $\theta_i$  as features in regression:  $\text{return}_i = \beta^\top \theta_i + \varepsilon_i$
3. Interpret: which topics predict positive/negative returns?

**Advantages:**

- Lower-dimensional representation ( $K \ll V$ )
- Interpretable features (topic = theme)
- Can capture semantic similarity (documents with similar topics)

# LDA variants and extensions

## **Supervised LDA (sLDA)<sup>2</sup>:**

- Include document-level response variable in the model
- Topics optimized for prediction, not just description

## **Structural Topic Model (STM)<sup>3</sup>:**

- Include document-level covariates (e.g., author, year)
- Topic prevalence and content can vary with covariates

# Summary: Topic models

## Key concepts:

- Topic models discover latent themes in text collections
- Documents = mixtures of topics, topics = distributions over words
- Inference via variational methods or Gibbs sampling

## Hyperparameters:

- $K$ : number of topics (most important choice!)
- $\alpha$ : controls sparsity of document-topic distributions (default:  $50/K$ )
- $\beta$ : controls sparsity of topic-word distributions (default: 0.01)

## Practical advice:

- Always inspect topics qualitatively
- Try multiple values of  $K$

## Next: Word embeddings

**Today:** Topics = discrete mixtures

**Next session:** Word embeddings = continuous representations

- Represent words as vectors in  $\mathbb{R}^d$  (e.g.,  $d = 100\text{--}300$ )
- Semantic relationships:  $\vec{\text{king}} - \vec{\text{man}} + \vec{\text{woman}} \approx \vec{\text{queen}}$
- Learn from word co-occurrence (Word2Vec, GloVe)
- Foundation for modern NLP (precursor to transformers)

Topics and embeddings are complementary:

- Topics: interpretable themes, document-level
- Embeddings: semantic similarity, word-level

# References I

-  Blei, David M, Andrew Y Ng, and Michael I Jordan (2003). “Latent dirichlet allocation”. In: *Journal of machine Learning research* 3.Jan, pp. 993–1022.
-  Mcauliffe, Jon and David Blei (2007). “Supervised topic models”. In: *Advances in neural information processing systems* 20.
-  Roberts, Margaret E, Brandon M Stewart, and Edoardo M Airoldi (2016). “A model of text for experimentation in the social sciences”. In: *Journal of the American Statistical Association* 111.515, pp. 988–1003.