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Overview of dictionary-based methods

• Dictionary-based text methods use a pre-selected list of words or phrases to
analyze a corpus.

• They can be corpus-specific: counting sets of words or phrases across
documents

◦ e.g., number of times a judge says “justice” vs. “efficiency”

• Or more general dictionaries:
◦ e.g., WordNet, LIWC, NRC Emotion Lexicon
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WordNet
• English word database: 118K nouns, 12K verbs, 22K adjectives, 5K adverbs

• Synonym sets (synsets) are a group of near-synonyms, plus a gloss
(definition)—also contains information on antonyms (opposites)

• Nouns are organized in a categorical hierarchy (hence “WordNet”)
◦ “hypernym” – the higher category that a word is a member of
◦ “hyponyms” – members of the category identified by a word
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WordNet supersenses (word categories)
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General dictionaries
• Function words (e.g. the, for, rather, than)

◦ Also called stopwords (often removed)

• LIWC (pronounced “Luke”): Linguistic Inquiry and Word Counts
◦ 2300 words
◦ 70 lists of category-relevant words, e.g. “emotion”, “cognition”, “work”,

“family”, “positive”, “negative”, etc.

• NRC Emotion Lexicon1

◦ 10,000 words coded along four emotional dimensions: joy–sadness,
anger-fear, trust-disgust, anticipation-surprise

• Norms of valence, arousal, and dominance2

◦ Code 14,000 words along three emotional dimensions: valence, arousal,
dominance
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Sentiment analysis is a very common use case for dictionaries.

• Extract a “tone” measure — positive, negative, or neutral.

• Let (wi , si) be dictionary words and their sentiment scores si ∈ [−1, 1].

e.g., (“perfect”, 0.8), (“awful”, -0.9)

• For a phrase j , compute sentiment by averaging only over words found in
the dictionary:

sj = 1
Kj

∑
i∈D(j)

si ,

where D(j) are dictionary matches and Kj is the number of matches.

• Words not in the dictionary are skipped (or they contribute 0).
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Application — What drives the radicalization of online protests?
• On Facebook, the Yellow Vests discussions became increasingly negative.
• Boyer et al. 2024 decompose this trend into two margins:

◦ Extensive margin: active users become more radical on average.
◦ Intensive margin: a given user becomes more likely to post radical messages

over time.
• We estimate:

Ys,i ,t = δi + γt + εs ,

where Ys,i ,t is the sentence’s sentiment, δi is a user fixed effect, and γt is a
month fixed effect.

• Implied decomposition of average radicalism in month t:

Et [Y ] = Et [δ] + γt , Et [δ] =
∑

i
si ,t δi ,

with si ,t the user i share of sentences in month t.
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Examples of the most positive sentences:
honneur gilet jaune
mdr
bravo
mercii jeune meilleur facon aider progres meilleur monde
bravo gabin media honnete souhaite reussite merite equipe bravo gj

Examples of the most negative sentences:
macron demission
macron cabanon castananer enfer
florence menteur
bande pourriture batard
castaner assassin degage voleur menteur
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Figure: Moderate users left, and those who remained radicalized.

Notes: The red line is the composition effect. The black line is individual-level radicalization
effect. The grey line is the total observed trend in the data.
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Application — Measuring Economic Policy Uncertainty3

• Source: monthly token counts from 10 large U.S. newspapers.

• Step 1 (search rule): tag an article as EPU if it contains one uncertainty
term (uncertainty/uncertain), one economy term (economic/economy), and
one policy term (e.g., congress, deficit, Federal Reserve, legislation,
regulation, White House).

• Step 2 (within-newspaper scaling): for each newspaper p and month t,

sp,t =
#EPU-tagged articlesp,t

#all articlesp,t
.

• Step 3 (aggregation and normalization): standardize each newspaper series
to be comparable, average across newspapers, then rescale the final series to
have mean 100 in a baseline period.
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Pros and Cons

• Pros

◦ Straightforward and transparent
◦ A lot of researcher control over the dictionary

• Cons

◦ Requires domain-specific knowledge
◦ Dictionaries cannot be exported easily to different contexts.
◦ Predicted sentiment is sensitive to the choice of the dictionary.
◦ Fails to identify irony.
◦ No machine learning involved, so the model has no opportunity to discover

patterns on its own.
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Source/Notes: Polarity of the eight sentiment methods across the labeled datasets, indicating
that existing methods vary widely in their agreement.4
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Other Simple Metrics You Should Know

• Document length

• Word length

• Entropy: a measure of how evenly word usage is spread across the
vocabulary. If p(w) is the share of tokens that are word w in a document,
then

H = −
∑

w∈V
p(w) log p(w).

Low entropy: repetition of a few words. High entropy: more diverse, evenly
distributed word use.
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